Abstract
Depression is characterized by a feeling of sadness and a lack of pleasure, with impaired daily functioning and poor quality of life. The neurobiology and the pathogenesis of depression are not fully understood yet. Several hypotheses have been discussed including, monoamine theory, neurotransmission, oxidation, inflammation, glutamatergic transmission, neurotrophic factors, and others. Reviewing three decades of randomized controlled trials of antidepressants revealed that the antidepressants response rate is about 54% compared to a placebo response rate of 37%. Treatment-resistant depression (TRD) could be defined as an inadequate response to two different of antidepressants. In TRD, a combination strategy of using two FDA-approved antidepressants is used, which may predispose patients to adverse effects. Therefore, there is a compelling need to explore the potential “out of the box” adjuvants to antidepressants to provide higher and consistent response rates with high tolerability. These adjuvants could be medications available for other indications, food supplements, or even experimental drugs. This review will highlight potentially beneficial adjuvants to antidepressants such as nitric oxide modulators, NMDA antagonists, anti-inflammatory, antioxidants, mitochondrial modulators, insulin sensitizers, opioids, probiotics, and GABA agonists.
Keywords
License
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Type: Review Article
ELECTRON J GEN MED, Volume 20, Issue 5, October 2023, Article No: em513
https://doi.org/10.29333/ejgm/13295
Publication date: 01 Sep 2023
Online publication date: 21 May 2023
Article Views: 1451
Article Downloads: 1189
Open Access References How to cite this articleReferences
- Gore FM, Bloem PJN, Patton GC, et al. Global burden of disease in young people aged 10-24 years: A systematic analysis. Lancet. 2011;377(6736):2093-102. https://doi.org/10.1016/S0140-6736(11)60512-6 PMid:21652063
- Hasin DS, Sarvet AL, Meyers JL, et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry. 2018;75(4):336-46. https://doi.org/10.1001/jamapsychiatry.2017.4602 PMid:29450462 PMCid:PMC5875313
- Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Ann Rev Public Health. 2013;34:119-38. https://doi.org/10.1146/annurev-publhealth-031912-114409 PMid:23514317 PMCid:PMC4100461
- Wang J, Wu X, Lai W, et al. Prevalence of depression and depressive symptoms among outpatients: A systematic review and meta-analysis. BMC Open. 2017;7:e017173. https://doi.org/10.1136/bmjopen-2017-017173 PMid:28838903 PMCid:PMC5640125
- Silva C, Bonadiman C, Maria V, et al. Depressive disorders in Brazil: Results from the global burden of disease study 2017. Popul Health Metr. 2020;18(Supplement 1):6. https://doi.org/10.1186/s12963-020-00204-5 PMid:32993670 PMCid:PMC7526360
- Chisholm D, Sweeny K, Sheehan P, et al. Scaling-up treatment of depression and anxiety: A global return on investment analysis. Lancet Psychiatry. 2016;3(5):415-24. https://doi.org/10.1016/S2215-0366(16)30024-4 PMid:27083119
- Caspi A, Caspi A, Sugden K, et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science. 2012;301(5631):386-9. https://doi.org/10.1126/science.1083968 PMid:12869766
- Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl). 2018;235(8):2195-220. https://doi.org/10.1007/s00213-018-4950-4 PMid:29961124 PMCid:PMC6061771
- Coe AB, Moczygemba LR, Gatewood SBS, Osborn RD, Matzke GR, Goode J-VR. Medication adherence challenges among patients experiencing homelessness in a behavioral health clinic. Res Soc Adm Pharm. 2015;11(3):e110-20. https://doi.org/10.1016/j.sapharm.2012.11.004 PMid:23218849 PMCid:PMC3733792
- Ho SC, Jacob SA, Tangiisuran B. Barriers and facilitators of adherence to antidepressants among outpatients with major depressive disorder: A qualitative study. PLoS One. 2017;12(6):e0179290. https://doi.org/10.1371/journal.pone.0179290 PMid:28614368 PMCid:PMC5470687
- Ashton AK, Jamerson BD, Weinstein WL, Wagoner C. Antidepressant-related adverse effects impacting treatment compliance: Results of a patient survey. Curr Ther Res. 2005;66(2):96-106. https://doi.org/10.1016/j.curtheres.2005.04.006 PMid:24672116 PMCid:PMC3964563
- Lu Y, Arthur D, Hu L, Cheng G, An F, Li Z. Beliefs about antidepressant medication and associated adherence among older Chinese patients with major depression: A cross-sectional survey. Int J Ment Health Nurs. 2016;25(1):71-9. https://doi.org/10.1111/inm.12181 PMid:26692425
- Haque A. Mental health concepts and program development in Malaysia. J Ment Health. 2005;14(2):183-95. https://doi.org/10.1080/09638230500059997
- Shrestha Manandhar J, Shrestha R, Basnet N, et al. Study of adherence pattern of antidepressants in patients with depression. Kathmandu Univ Med J (KUMJ). 2017;15(57):3-9.
- Russell J, Kazantzis N. Medication beliefs and adherence to antidepressants in primary care. N Z Med J. 2008;121(1286):14-20.
- Rakesh G, Pae C-U, Masand PS. Beyond serotonin: Newer antidepressants in the future. Expert Rev Neurother. 2017;17(8):777-90. https://doi.org/10.1080/14737175.2017.1341310 PMid:28598698
- Kala M, Nivsarkar M. Role of cortisol and superoxide dismutase in psychological stress induced anovulation. Gen Comp Endocrinol. 2016;225:117-24. https://doi.org/10.1016/j.ygcen.2015.09.010 PMid:26393311
- Papakostas GI, Fava M, Thase ME. Treatment of SSRI-resistant depression: A meta-analysis comparing within–versus across–class switches. Biol Psychiatry. 2008;63(7): 699-704. https://doi.org/10.1016/j.biopsych.2007.08.010 PMid:17919460
- Undurraga J, Baldessarini RJ. Randomized, placebo-controlled trials of antidepressants for acute major depression: Thirty-year meta-analytic review. Neuropsychopharmacology. 2012;37(4):851-64. https://doi.org/10.1038/npp.2011.306 PMid:22169941 PMCid:PMC3280655
- Nierenberg AA, Amsterdam JD. Treatment-resistant depression:Definition and treatment approaches. J Clin Psychiatry. 1990;51(Suppl):39-47.
- Rojo JE, Ros S, Agüera L, De La Gándara J, De Pedro JM. Combined antidepressants: Clinical experience. Acta Psychiatry Scand Suppl. 2005;112(s428):25-31. https://doi.org/10.1111/j.1600-0447.2005.00677.x PMid:16307617
- AHA. AHA journals’ trend watch! Available at: https://www.ahajournals.org/trend-watch (Accessed: 22 March 2023).
- Oliva V, Lippi M, Paci R, et al. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2021;109:110266. https://doi.org/10.1016/j.pnpbp.2021.110266 PMid:33549697
- Halperin D, Reber G. Influence of antidepressants on hemostasis. Dialogues Clin Neurosci. 2022;9(1):47-59. https://doi.org/10.31887/DCNS.2007.9.1/dhalperin PMid:17506225 PMCid:PMC3181838
- Hasler WL. Serotonin and the GI tract. Curr Gastroenterol Rep. 2009;11(5):383-91. https://doi.org/10.1007/s11894-009-0058-7 PMid:19765366
- Milan R, Vasiliadis H-M. The association between side effects and adherence to antidepressants among primary care community-dwelling older adults. Aging Ment Health. 2020;24(8):1229-36. https://doi.org/10.1080/13607863.2019.1594165 PMid:30938182
- van Walraven C, Mamdani MM, Wells PS, Williams JI. Inhibition of serotonin reuptake by antidepressants and upper gastrointestinal bleeding in elderly patients: retrospective cohort study. BMJ. 2001;323(7314):655-8. https://doi.org/10.1136/bmj.323.7314.655 PMid:11566827 PMCid:PMC55923
- Dalton SO, Johansen C, Mellemkjær L, Sørensen HT, Nørgård B, Olsen JH. Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal tract bleeding: A population-based cohort study. Arch Intern Med. 2003; 163(1):59-64. https://doi.org/10.1001/archinte.163.1.59 PMid:12523917
- Ceylan ME, Alpsan-Omay MH. Bleeding induced by SSRIs. Eur Psychiatry. 2005;20(8):570-1. https://doi.org/10.1016/j.eurpsy.2004.09.018 PMid:16337893
- Shahrbabki ME, Shahrbabaki AE. Sertraline-related bleeding tendency: Could it be dose-dependent? Iran J Psychiatry Behav Sci. 2014;8(3):81-3.
- Spindelegger CJ, Papageorgiou K, Grohmann R, et al. Cardiovascular adverse reactions during antidepressant treatment: A drug surveillance report of German-speaking countries between 1993 and 2010. Int J Neuropsychopharmacol. 2015;18(4):pyu080. https://doi.org/10.1093/ijnp/pyu080 PMid:25522416 PMCid:PMC4360213
- Mago R, Tripathi N, Andrade C. Cardiovascular adverse effects of newer antidepressants. Expert Rev Neurother. 2014;14(5):539-51. https://doi.org/10.1586/14737175.2014.908709 PMid:24738823
- Gillman PK. Serotonin syndrome: History and risk. Fundam Clin Pharmacol. 2009;12(5):482-91. https://doi.org/10.1111/j.1472-8206.1998.tb00976.x PMid:9794145
- Guix FX, Uribesalgo I, Coma M, Munoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol. 2005;76(2):126-52. https://doi.org/10.1016/j.pneurobio.2005.06.001 PMid:16115721
- Amitai Y. Physiologic role for “inducible” nitric oxide synthase: A new form of astrocytic-neuronal interface. Glia. 2010;58(15):1775-81. https://doi.org/10.1002/glia.21057 PMid:20737473
- Kim Y-K, Paik J-W, Lee S-W, Yoon D, Han C, Lee B-H. Increased plasma nitric oxide level associated with suicide attempt in depressive patients. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(6):1091-6. https://doi.org/10.1016/j.pnpbp.2006.04.008 PMid:16725247
- Lee B, Lee S, Yoon D, Lee H. Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiol. 2006;53(3):127-32. https://doi.org/10.1159/000092542 PMid:16601363
- Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M. Elevated plasma nitrate levels in depressive states. J Affect Disord. 2001;63(1-3):221-4. https://doi.org/10.1016/S0165-0327(00)00164-6 PMid:11246099
- Harkin AJ, Bruce KH, Craft B, Paul IA. Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol. 1999;372(3):207-13. https://doi.org/10.1016/S0014-2999(99)00191-0 PMid:10395013
- Jesse CR, Bortolatto CF, Savegnago L, Rocha JBT, Nogueira CW. Progress in neuro-psychopharmacology & biological psychiatry involvement of L-arginine–nitric oxide–cyclic guanosine monophosphate pathway in the antidepressant-like effect of tramadol in the rat forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1838-43. https://doi.org/10.1016/j.pnpbp.2008.08.010 PMid:18773934
- Dhir A, Kulkarni SK. Involvement of L-arginine–nitric oxide–cyclic guanosine monophosphate pathway in the antidepressant-like effect of venlafaxine in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(4):921-5. https://doi.org/10.1016/j.pnpbp.2007.02.008 PMid:17379375
- Wegener G, Volke V. Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals. 2010;3(1):273-99. https://doi.org/10.3390/ph3010273 PMid:27713253 PMCid:PMC3991030
- Vasilescu A-N, Schweinfurth N, Borgwardt S, et al. Modulation of the activity of N-methyl-d-aspartate receptors as a novel treatment option for depression: current clinical evidence and therapeutic potential of rapastinel (GLYX-13). Neuropsychiatr Dis Treat. 2017;13:973-80. https://doi.org/10.2147/NDT.S119004 PMid:28408831 PMCid:PMC5384686
- Esplugues JV. NO as a signalling molecule in the nervous system. Br J Pharmacol. 2002;135(5):1079-95. https://doi.org/10.1038/sj.bjp.0704569 PMid:11877313 PMCid:PMC1573233
- Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383-400. https://doi.org/10.1038/nrn3504 PMid:23686171
- Newport DJ, Carpenter LL, McDonald WM, et al. Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172(10):950-60. https://doi.org/10.1176/appi.ajp.2015.15040465 PMid:26423481
- Niesters M, Martini C, Dahan A. Ketamine for chronic pain: Risks and benefits. Br J Clin Pharmacol. 2013;77(2):357-67. https://doi.org/10.1111/bcp.12094 PMid:23432384 PMCid:PMC4014022
- Ghasemi M, Raza M, Dehpour AR. NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol. 2010;24(4):585-94. https://doi.org/10.1177/0269881109104845 PMid:19351802
- Huber TJ, Dietrich DE, Emrich HM. Possible use of amantadine in depression. Pharmcopsychiatry. 1999;32(2):47-55. https://doi.org/10.1055/s-2007-979191 PMid:10333162
- Fedgchin M, Trivedi M, Daly EJ, et al. Efficacy and safety of fixed-dose esketamine nasal spray combined with a new oral antidepressant in treatment-resistant depression: Results of a randomized, double-blind, active-controlled study (TRANSFORM-1). Int J Neuropsychopharmacol. 2019;22(10):616-30. https://doi.org/10.1093/ijnp/pyz039 PMid:31290965 PMCid:PMC6822141
- Kohler O, Krogh J, Mors O, Benros ME. Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol. 2016;14(1):732-42. https://doi.org/10.2174/1570159X14666151208113700 PMid:27640518 PMCid:PMC5050394
- Müller N. Immunology of major depression. Neuroimmunomodulation. 2014;21(2-3):123-30. https://doi.org/10.1159/000356540 PMid:24557045
- Green HF, Nolan YM. GSK-3 mediates the release of IL-1 b, TNF-a and IL-10 from cortical glia. Neurochem Int. 2012; 61(5):666-71. https://doi.org/10.1016/j.neuint.2012.07.003 PMid:22796213
- Lotrich FE. Inflammatory cytokine-associated depression. Brain Res. 2015;1617:113-25. https://doi.org/10.1016/j.brainres.2014.06.032 PMid:25003554 PMCid:PMC4284141
- Roman M, Irwin MR. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain Behav Immun. 2020;83:7-21. https://doi.org/10.1016/j.bbi.2019.09.016 PMid:31550500 PMCid:PMC6940145
- Hang X, Zhang Y, Li J, et al. Comparative efficacy and acceptability of anti-inflammatory agents on major depressive disorder: A network meta-analysis. Front Pharmacol. 2021;12:691200. https://doi.org/10.3389/fphar.2021.691200 PMid:34276378 PMCid:PMC8281269
- Adzic M, Brkic Z, Mitic M, et al. Therapeutic strategies for treatment of inflammation-related depression. Curr Neuropharmacol. 2018;16(2):176-209. https://doi.org/10.2174/1570159X15666170828163048 PMid:28847294 PMCid:PMC5883379
- Dean OM, Kanchanatawan B, Ashton M, et al. Adjunctive minocycline treatment for major depressive disorder: A proof of concept trial. Aust N Z J Psychiatry. 2017;51(8):829-40. https://doi.org/10.1177/0004867417709357 PMid:28578592
- Sarris J, Schoendorfer N, Kavanagh DJ. Major depressive disorder and nutritional medicine: A review of monotherapies and adjuvant treatments. Nutr Rev. 2009;67(3):125-31. https://doi.org/10.1111/j.1753-4887.2009.00180.x PMid:19239627
- Klinedinst NJ, Regenold WT. A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr. 2015;47(1-2):155-71. https://doi.org/10.1007/s10863-014-9584-6 PMid:25262287
- Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003; 160(8):1516-8. https://doi.org/10.1176/appi.ajp.160.8.1516 PMid:12900317
- Kitamura T, Saitoh Y, Takashima N, et al. Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell. 2009;139(4):814-27. https://doi.org/10.1016/j.cell.2009.10.020 PMid:19914173
- Gardner A, Boles RG. Is a “mitochondrial psychiatry” in the future ? A review. Curr Psychiatry Rev. 2005;1(3):255-71. https://doi.org/10.2174/157340005774575064
- Moreno J, Gaspar E, Lopez-Bello G, et al. Increase in nitric oxide levels and mitochondrial membrane potential in platelets of untreated patients with major depression. Psychiatry Res. 2013;209(3):447-52. https://doi.org/10.1016/j.psychres.2012.12.024 PMid:23357685
- Nunes SOV, Vargas HO, Prado E, et al. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence. Neurosci Biobehav Rev. 2013;37(8):1336-45. https://doi.org/10.1016/j.neubiorev.2013.04.014 PMid:23660457
- Gammoh O, Mayyas F, Elhajji FD. Chlorpheniramine and escitalopram: Similar antidepressant and nitric oxide lowering roles in a mouse model of anxiety. Biomed Rep. 2017;6(6):675-80. https://doi.org/10.3892/br.2017.901 PMid:28584640 PMCid:PMC5449970
- Lucca G, Comim CM, Valvassori SS, et al. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res. 2009;43(9):864-9. https://doi.org/10.1016/j.jpsychires.2008.11.002 PMid:19100996
- Gardner A, Johansson A, Wibom R, et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76(1-3):55-68. https://doi.org/10.1016/S0165-0327(02)00067-8 PMid:12943934
- Hroudová J, Fisar Z, Kitzlerová E, Zverova M, Raboch J. Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion. 2013;13(6):795-800. https://doi.org/10.1016/j.mito.2013.05.005 PMid:23688905
- Sjövall F, Ehinger JKH, Marelsson SE, et al. Mitochondrial respiration in human viable platelets–Methodology and in fl uence of gender, age and storage. Mitochondrion. 2013;13(1):7-14. https://doi.org/10.1016/j.mito.2012.11.001 PMid:23164798
- Karabatsiakis A, Böck C, Salinas-Manrique J, et al. Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry. 2014;4:e397. https://doi.org/10.1038/tp.2014.44 PMid:26126180 PMCid:PMC4080325
- Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44-84. https://doi.org/10.1016/j.biocel.2006.07.001 PMid:16978905
- Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676-92. https://doi.org/10.1016/j.pnpbp.2010.05.004 PMid:20471444
- Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BWJH. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinol. 2015;51:164-75. https://doi.org/10.1016/j.psyneuen.2014.09.025 PMid:25462890
- Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmcol. 2011;14(1):123-30. https://doi.org/10.1017/S1461145710000805 PMid:20633320
- Binfaré RW, Rosa AO, Lobato KR, Santos ARS, Rodrigues ALS. Ascorbic acid administration produces an antidepressant-like effect: Evidence for the involvement of monoaminergic neurotransmission. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):530-40. https://doi.org/10.1016/j.pnpbp.2009.02.003 PMid:19439241
- Amr M, El-Mogy A, Shams T, Vieira K, Lakhan SE. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: A randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013;12:31. https://doi.org/10.1186/1475-2891-12-31 PMid:23510529 PMCid:PMC3599706
- Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: A meta-analysis. Crit Rev Food Sci Nutr. 2019; 60:1-11. https://doi.org/10.1080/10408398.2019.1653260 PMid:31423805
- Milani P, Ambrosi G, Gammoh O, Blandini F, Cereda C. SOD1 and DJ-1 converge at Nrf2 pathway: A clue for antioxidant therapeutic potential in neurodegeneration. Oxid Med Cell Longev. 2013;2013:836760. https://doi.org/10.1155/2013/836760 PMid:23983902 PMCid:PMC3745953
- Kumar MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39-43. https://doi.org/10.1016/j.pbb.2008.10.007 PMid:19000708
- Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacol. 2008;201:435-42. https://doi.org/10.1007/s00213-008-1300-y PMid:18766332
- Lin KW, Wroolie TE, Robakis T, Rasgon NL. Adjuvant pioglitazone for unremitted depression: Clinical correlates of treatment response. Psychiatry Res. 2015;230(3):846-52. https://doi.org/10.1016/j.psychres.2015.10.013 PMid:26602230 PMCid:PMC4978223
- Himelein MJ, Thatcher SS. Depression and body image among women with polycystic ovary syndrome. J Health Psychol. 2014;11(4):613-25. https://doi.org/10.1177/1359105306065021 PMid:16769740
- Rasgon NL, Kenna HA, Williams KE, Powers B, Wroolie T, Schatzberg AF. Rosiglitazone add-on in treatment of depressed patients with insulin resistance: A pilot study. ScientificWorldJournal. 2010;10:321-8. https://doi.org/10.1100/tsw.2010.32 PMid:20191245 PMCid:PMC5763944
- Holmdahl G, Hakanson R, Leander S, Rosell S, Folkers K, Sundler F. A substance P antagonist, [D-Pro2, D-Trp7, 9]SP, inhibits inflammatory responses in the rabbit eye. Science. 1981;214(4524):1029-31. https://doi.org/10.1126/science.6171036 PMid:6171036
- Boyd Jr FT, Clarke DW, Raizada MK. Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Res. 1986;398(1):1-5. https://doi.org/10.1016/0006-8993(86)91242-4 PMid:3542120
- Goodnick PJ. Use of antidepressants in treatment of comorbid diabetes mellitus and depression as well as in diabetic neuropathy. Ann Clin Psychiatry. 2001;13(1):31-41. https://doi.org/10.3109/10401230109147127 PMid:11465683
- Hegadoren KM, O’Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N. The role of β-endorphin in the pathophysiology of major depression. Neuropeptides. 2009;43(5):341-53. https://doi.org/10.1016/j.npep.2009.06.004 PMid:19647870
- Pecina M, Zubieta J-K. Expectancy modulation of opioid neurotransmission. Int Rev Neurobiol. 2019;138:17-37. https://doi.org/10.1016/bs.irn.2018.02.003 PMid:29681324 PMCid:PMC6314670
- Galeotti N, Ghelardini C. Regionally selective activation and differential regulation of ERK, JNK and p38 MAP kinase signalling pathway by protein kinase C in mood modulation. Int J Neuropsychopharmacol. 2012;15(6):781-93. https://doi.org/10.1017/S1461145711000897 PMid:21682943
- Gross-isseroff R, Biegon A, Voet H, Weizman A. The suicide brain: A review of postmortem receptor/transporter binding studies. Neurosci Biobehav Rev. 1998;22(5):653-61. https://doi.org/10.1016/S0149-7634(97)00061-4 PMid:9662726
- Gabilondo AM, Meana JJ, Garcia-Sevilla JA. Increased density of μ-opioid receptors in the postmortem brain of suicide victims. Brain Res. 1995;682(1-2):245-50. https://doi.org/10.1016/0006-8993(95)00333-L PMid:7552322
- Beardsley PM, Howard JL, Shelton KL, Carroll FI. Differential effects of the novel kappa opioid receptor antagonist, JDTic, on reinstatement of cocaine-seeking iinduced by footshock stressors vs cocaine primes and its antidepressant-like effects in rats. Psychopharmacol. 2005; 183:118-26. https://doi.org/10.1007/s00213-005-0167-4 PMid:16184376
- Valenza M, Butelman ER, Kreek MJ. “Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats”. Psychopharmacol. 2017;234:2219-31. https://doi.org/10.1007/s00213-017-4647-0 PMid:28550455 PMCid:PMC5591939
- Miller JM, Zanderigo F, Purushothaman PD, et al. Kappa opioid receptor binding in major depression: A pilot study. Synapse. 2018;72(9):e22042. https://doi.org/10.1002/syn.22042 PMid:29935119 PMCid:PMC7599086
- Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C. The dysphoric component of stress is encoded by activation of the dynorphin K-opioid system. J Neurosci. 2008;28(2):407-14. https://doi.org/10.1523/JNEUROSCI.4458-07.2008 PMid:18184783 PMCid:PMC2612708
- Vlainic JV, Suran J, Vlainic T, Vukorep AL. Probiotics as an adjuvant therapy in major depressive disorder. Curr Neuropharmacol. 2016;14(89:952-8. https://doi.org/10.2174/1570159x14666160526120928
- Bercik P, Verdu EF, Foster JA, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102-12. https://doi.org/10.1053/j.gastro.2010.06.063 PMid:20600016
- Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinol. 2012;37(11):1885-95. https://doi.org/10.1016/j.psyneuen.2012.03.024 PMid:22541937
- Nusser Z, Roberts JDB, Baude A, Richards JG, Sieghart W, Somogyi P. Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus. Eur J Neurosci. 1995;7(4):630-46. https://doi.org/10.1111/j.1460-9568.1995.tb00667.x PMid:7620614
- Olsen RW, Sieghart W. Subtypes of γ-aminobutyric acidA receptors: Classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev. 2008;60(3):243-60. https://doi.org/10.1124/pr.108.00505 PMid:18790874 PMCid:PMC2847512
- Vicente B, Saldivia S, Hormazabal N, Bustos C, Rubi P. Etifoxine is non-inferior than clonazepam for reduction of anxiety symptoms in the treatment of anxiety disorders: A randomized, double blind, non-inferiority trial. Psychopharmacology (Berl). 2020;237(11):3357-67. https://doi.org/10.1007/s00213-020-05617-6 PMid:33009629
- Curran HV. Benzodiazepines, memory and mood: A review. Psychopharmacology (Berl). 1991;105(1):1-8. https://doi.org/10.1007/BF02316856 PMid:1684055
- Woods JH, Winger G. Current benzodiazepine issues. Psychopharmacology (Berl). 1995;118(2):107-15. https://doi.org/10.1007/BF02245824 PMid:7617794
- Zandonai T, Lugoboni F, Zamboni L. A risk for athletes: When the desire to sleep becomes a nightmare. A brief case report on benzodiazepine addiction. Psychopharmacology (Berl). 2018;235(11):3359-60. https://doi.org/10.1007/s00213-018-5047-9 PMid:30251160
- Lader M. Benzodiazepines revisited–will we ever learn? Addict. 2011;106(12):2086-109. https://doi.org/10.1111/j.1360-0443.2011.03563.x PMid:21714826
- Use S, Kapczinski F, Amaral OB, et al. Use and misuse of benzodiazepines in Brazil: A review. Subst Use Misuse. 2001;36(8)1053-69. https://doi.org/10.1081/JA-100104489 PMid:11504152
- Choi YM, Kim KH. Etifoxine for pain patients with anxiety. Korean J Pain. 2015;28(1):4-10. https://doi.org/10.3344/kjp.2015.28.1.4 PMid:25589941 PMCid:PMC4293506
- Stein DJ. Etifoxine versus alprazolam for the treatment of adjustment disorder with anxiety: A randomized controlled trial. Adv Ther. 2015;32(1):57-68. https://doi.org/10.1007/s12325-015-0176-6 PMid:25620535 PMCid:PMC4311065
- Micallef J, Soubrouillard C, Guet F, et al. A double blind parallel group placebo controlled comparison of sedative and amnesic effects of etifoxine and lorazepam in healthy subjects. Fundam Clin Pharmacol. 2001;15(3):209-16. https://doi.org/10.1046/j.1472-8206.2001.00025.x PMid:11468032
- Gammoh OS, Al-Smadi A, Turjman C, Mukattash T, Kdour M. Valerian: An underestimated anxiolytic in the community pharmacy? J Herb Med. 2016;6(4):193-7. https://doi.org/10.1016/j.hermed.2016.09.001
- Khom S, Baburin I, Timin E, et al. Valerenic acid potentiates and inhibits GABA A receptors: Molecular mechanism and subunit specificity. Neuropharmacol. 2007;53(1):178-87. https://doi.org/10.1016/j.neuropharm.2007.04.018 PMid:17585957
- Becker A, Felgentreff F, Schröder H, Meier B, Brattström A. The anxiolytic effects of a valerian extract is based on valerenic acid. BMC Complement Altern Med. 2014;14:267. https://doi.org/10.1186/1472-6882-14-267 PMid:25066015 PMCid:PMC4122768
- Yuan C-S, Mehendale S, Xiao Y, Aung HH, Xie J-T, Ang-Lee MK. The gamma-aminobutyric acidergic effects of valerian and valerenic acid on rat brainstem neuronal activity. Anesth Analg. 2004;98(2):353-8. https://doi.org/10.1213/01.ANE.0000096189.70405.A5 PMid:14742369
- Ionescu DF, Rosenbaum JF, Alpert JE. Pharmacological approaches to the challenge of treatment-resistant depression. Dialogues Clin Neurosci. 2015;17(2):111-26. https://doi.org/10.31887/dcns.2015.17.2/dionescu PMid:26246787 PMCid:PMC4518696
- Dhir A, Kulkarni SK. Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor. Eur J Pharmacol. 2007;568(1-3):177-85. https://doi.org/10.1016/j.ejphar.2007.04.028 PMid:17509558
- Ghasemi M, Sadeghipour H, Mosleh A, Sadeghipour HR, Mani AR, Dehpour AR. Nitric oxide involvement in the antidepressant-like effects of acute lithium administration in the mouse forced swimming test. Eur Neuropsychopharmacol. 2008;18(5):323-32. https://doi.org/10.1016/j.euroneuro.2007.07.011 PMid:17728109
- Arana GW, Santos AB, Laraia MT, et al. Dexamethasone for the treatment of depression: A randomized, placebo-controlled, double-blind trial. Am J Psychiatry. 1995; 152(2):265-7. https://doi.org/10.1176/ajp.152.2.265 PMid:7840362
- Castillo MFR, Murata S, Schwarz M, et al. Celecoxib augmentation of escitalopram in treatment-resistant bipolar depression and the e ff ects on quinolinic acid. Neurol Psychiatry Brain Res. 2019;32:22-9. https://doi.org/10.1016/j.npbr.2019.03.005
- Salagre E, Fernandes BS, Dodd S, Brownstein DJ, Berk M. Statins for the treatment of depression: A meta-analysis of randomized, double-blind, placebo-controlled trials. J Affect Disord. 2016;200:235-42. https://doi.org/10.1016/j.jad.2016.04.047 PMid:27148902
- Lim S-W, Shiue Y-L, Liao J-C, et al. Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing neuroinflammation in the hippocampus. Neurocrit Care. 2016;26:122-32. https://doi.org/10.1007/s12028-016-0290-6 PMid:27406816
- Taniguti EH, Ferreira YS, Stupp IJ V, et al. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull. 2019;146:279-86. https://doi.org/10.1016/j.brainresbull.2019.01.018 PMid:30690060
- Jiang X, Liu J, Lin Q, et al. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroin fl ammatory pathway. Brain Res Bull. 2017;135:40-6. https://doi.org/10.1016/j.brainresbull.2017.09.010 PMid:28941603
- Park J-H, Cha H-Y, Seo J-J, Hong J-T, Han K, Oh K-W. Anxiolytic-like effects of ginseng in the elevated plus-maze model: Comparison of red ginseng and sun ginseng. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(6):895-900. https://doi.org/10.1016/j.pnpbp.2005.04.016 PMid:16002200
- Rosenblat JD, Mcintyre RS. Efficacy and tolerability of minocycline for depression: A systematic review and meta- analysis of clinical trials. J Affect Disord. 2017;227:219-25. https://doi.org/10.1016/j.jad.2017.10.042 PMid:29102836
- Bavaresco DV, Uggioni MLR, Ferraz SD, et al. Efficacy of infliximab in treatment-resistant depression: A systematic review and meta-analysis. Pharmacol Biochem Behav. 2020;188:172838. https://doi.org/10.1016/j.pbb.2019.172838 PMid:31837338
- Sarris J, Kavanagh DJ, Byrne G. Adjuvant use of nutritional and herbal medicines with antidepressants, mood stabilizers and benzodiazepines. J Psychiatr Res. 2010;44(1):32-41. https://doi.org/10.1016/j.jpsychires.2009.06.003 PMid:19616220
- Graef JD, Newberry K, Newton A, et al. Effect of acute NR2B antagonist treatment on long-term potentiation in the rat hippocampus. Brain Res. 2015;1609:31-9. https://doi.org/10.1016/j.brainres.2015.03.019 PMid:25796435
- Melo A, Kokras N, Dalla C, et al. The positive effect on ketamine as a priming adjuvant in antidepressant treatment. Transl Psychiatry. 2015;5:e573. https://doi.org/10.1038/tp.2015.66 PMid:26080090 PMCid:PMC4471295
- Downey D, Dutta A, Mckie S, et al. Comparing the actions of lanicemine and ketamine in depression: Key role of the anterior cingulate. Eur Neuropsyshopharmacol. 2016;26(6):994-1003. https://doi.org/10.1016/j.euroneuro.2016.03.006 PMid:27133029
- Papp M, Moryl E, Maccecchini ML. Differential effects of agents acting at various sites of the NMDA receptor complex in a place preference conditioning model. Eur J Pharmacol. 1996;317(2-3):191-6. https://doi.org/10.1016/S0014-2999(96)00747-9 PMid:8997600
- Majewska MD, Bell JA, London ED. Regulation of the NMDA receptor by redox phenomena: In ascorbatery role of ascorbate. Brain Res. 1990;537(1-2):328-32. https://doi.org/10.1016/0006-8993(90)90379-P PMid:1964838
- Rebec GV, Pierce RC. A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobial. 1994;43(6):537-65. https://doi.org/10.1016/0301-0082(94)90052-3 PMid:7816935
- Sahraian A, Ghanizadeh A, Kazemeini F. Vitamin C as an adjuvant for treating major depressive disorder and suicidal behavior, a randomized placebo-controlled clinical trial. Trials. 2015;16:94. https://doi.org/10.1186/s13063-015-0609-1 PMid:25873303 PMCid:PMC4376513
- Ghaleiha A, Davari H, Jahangard L, et al. Adjuvant thiamine improved standard treatment in patients with major depressive disorder: Results from a randomized, double-blind, and placebo-controlled clinical trial. Eur Arch Psychiatry Clin Neurosci. 2016;266:695-702. https://doi.org/10.1007/s00406-016-0685-6 PMid:26984349
- Othman H, Ammari M, Lassoued A, Sakly M, Abdelmelek H. Zinc improves clomipramine effects on depressive and locomotor behavior and reverses its oxidative stress in rats. Behav Brain Res. 2019;374:112122. https://doi.org/10.1016/j.bbr.2019.112122 PMid:31376442
- Yovell Y, Bar G, Mashiah M, et al. Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: A randomized controlled trial. Am J Psychiatry. 2016;173(5):491-8. https://doi.org/10.1176/appi.ajp.2015.15040535 PMid:26684923
- Ehrich E, Turncliff R, Du Y, et al. Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacol. 2015;40:1448-55. https://doi.org/10.1038/npp.2014.330 PMid:25518754 PMCid: PMC4397403
- Tillisch K, Labus J, Kilpatrick L, et al. Consumption of fermented milk product with probiaotic modulates brain activity. Gastroenterology. 2013;144(7):1394-401. https://doi.org/10.1053/j.gastro.2013.02.043 PMid:23474283 PMCid:PMC3839572
How to cite this article
Vancouver
Gammoh OS, Bashatwah R. Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory. ELECTRON J GEN MED. 2023;20(5):em513. https://doi.org/10.29333/ejgm/13295
APA
Gammoh, O. S., & Bashatwah, R. (2023). Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory. Electronic Journal of General Medicine, 20(5), em513. https://doi.org/10.29333/ejgm/13295
AMA
Gammoh OS, Bashatwah R. Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory. ELECTRON J GEN MED. 2023;20(5), em513. https://doi.org/10.29333/ejgm/13295
Chicago
Gammoh, Omar Salem, and Rasha Bashatwah. "Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory". Electronic Journal of General Medicine 2023 20 no. 5 (2023): em513. https://doi.org/10.29333/ejgm/13295
Harvard
Gammoh, O. S., and Bashatwah, R. (2023). Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory. Electronic Journal of General Medicine, 20(5), em513. https://doi.org/10.29333/ejgm/13295
MLA
Gammoh, Omar Salem et al. "Potential strategies to optimize the efficacy of antidepressants: Beyond the monoamine theory". Electronic Journal of General Medicine, vol. 20, no. 5, 2023, em513. https://doi.org/10.29333/ejgm/13295